Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Ecol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637418

RESUMEN

Scirpophaga incertulas Walker (Lepidoptera: Crambidae, yellow stem borer, YSB) is a monophagous insect pest that causes significant yield loss in rice (Oryza staiva L.). Semiochemical based pest management is being sought as an alternate to chemical pesticides to reduce pesticide footprints. We hypothesized differential release of volatiles from host rice and two companion non-host weeds, Echinochloa colona and Echinochloa crus-galli could be responsible for oviposition and biology of YSB and these chemicals could be used for YSB management. Number of eggs laid, and number of larvae hatched were significantly higher in rice plant as compared to weeds. YSB could only form dead hearts in rice plants. YSB significantly preferred host-plant volatiles compared to the non-host plants both in choice and no-choice tests in an Y-tube olfactometer. 2-Hexenal, hexanal, 2,4-hexadienal, benzaldehyde, nonanal, methyl salicylate and decanal were found in the leaf volatolomes of both the host and non-host plants in HS-SPME-GC-MS (Headspace-Solid phase micro extraction-Gas chromatography-Mass spectrometer). Pentene-3-one, 2-pentyl furan, 2,4-heptadienal, 2-octenal, 2-octenol and menthol were present only in the non-host plants. Fourteen rice unique compounds were also detected. The built-in PCA (Principal Component Analysis) and PLS-DA (Partial least squares-discriminant analysis) analysis in the MS-DIAL tool showed that the volatiles emitted from TN1 formed a cluster distinct from Echinochloa spp. and 2-octenal was identified as a unique compound. Olfactometer bioassays using synthetic compounds showed that rice unique compounds, like xylene, hexanal served as attractants whereas non-host unique compounds, like 2-pentylfuran, 2-octenal acted as repellent. The results indicate that the rice unique compounds xylene, hexanal along with other volatile compounds could be responsible for higher preference of YSB towards rice plants. Similarly, the non-host unique compounds 2-pentylfuran, 2-octenal could possibly be responsible for lower preference and defence against YSB. These compounds could be utilised for devising traps for YSB monitoring and management.

2.
J Hazard Mater ; 469: 133852, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430593

RESUMEN

The present investigation was planned to bridge the knowledge gap on spatiotemporal variations of pesticide pollution in small streams adjacent to paddy fields, and to visualize the associated risks in the aquatic ecosystems. We screened 106 pesticides using GCMSMS and LCMSMS from 10 small streams (n = 212, surface water samples) adjacent to paddy fields over seven months. Fifty-five pesticides were detected across different streams and months. The highest mean concentration was detected for fenobucarb (272 ng L-1), followed by thiamethoxam (199 ng L-1). The highest maximum concentration was detected for thiamethoxam ( 13,264 ng L-1), followed by triflumezopyrim ( 11,505 ng L-1). The highest detection frequency was recorded for fenobucarb (80.00%), followed by pretilachlor (79.00%). Out of the ten streams, Attabira stream had the highest mean number of pesticides detected in each sample. Maximum number of pesticides were detected in October followed by September. Pesticides namely, hexaconazole, pretilachlor, tricyclazole, fenobucarb and thiamethoxam were consistently detected across all streams. The risk assessment against the fishes, micro-invertebrates and algae were measured by risk quotient index (RQ). Twenty-five pesticides out of the detected pesticides (n = 55) had risk quotient values greater than 1. The highest RQmax values were observed in case of fenpropathrin followed by cyfluthrin-3. The highest RQmean value was observed in case of cyfluthrin, indicating its higher toxicity to fishes. The present study reveals that small streams are polluted with pesticides and there is a need to develop strategies and policy interventions in regularizing the pesticide uses for reducing the pesticide pollution in aquatic systems.


Asunto(s)
Acetanilidas , Carbamatos , Nitrilos , Plaguicidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Plaguicidas/análisis , Ecosistema , Tiametoxam , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Peces , Medición de Riesgo , Agricultura
3.
Sci Rep ; 14(1): 1779, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245579

RESUMEN

Rice (Oryza sativa) being among the most important food crops in the world is also susceptible to various bacterial and fungal diseases that are the major stumbling blocks in the way of increased production and productivity. The bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae and the sheath blight disease caused by Rhizoctonia solani are among the most devastating diseases of the rice crop. In spite of the availability of array of chemical control, there are chances of development of resistance. Thus, there is a need for the nanotechnological intervention for management of disease in the form of copper and silver nano-composites. The copper (CuNPs) and silver nanoparticles (AgNPs) were synthesized using green route and characterized using different high throughput techniques, i.e., UV-Vis, FT-IR, DLS, XRD, FE-SEM, TEM. The particle size and zeta potential of synthesized CuNPs and AgNPs were found 273 nm and - 24.2 mV; 95.19 nm and - 25.5 mV respectively. The nanocomposite of CuNPs and AgNPs were prepared having particle size in the range of 375-306 nm with improved stability (zeta potential - 54.7 to - 39.4 mV). The copper and silver nanoparticle composites evaluated against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani were found to have higher antibacterial (inhibition zone 13 mm) and antifungal activities (77%) compared to only the copper nanoparticle (8 mm; 62% respectively). Net house trials of nano-composite formulations against the bacterial blight of rice also corroborated the potential of nanocomposite formulation. In silico studies were carried out selecting two disease-causing proteins, peptide deformylase (Xanthomonas oryzae) and pectate lyase (Rhizoctonia solani) to perform the molecular docking. Interaction studies indicatedthat both of these proteins generated better complex with CuNPs than AgNPs. The study suggested that the copper and silver nano-composites could be used for developing formulations to control these devastating rice diseases.


Asunto(s)
Nanopartículas del Metal , Oryza , Rhizoctonia , Xanthomonas , Plata/farmacología , Plata/metabolismo , Nanopartículas del Metal/química , Cobre/farmacología , Cobre/metabolismo , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
4.
J Food Sci Technol ; 60(3): 1185-1194, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908367

RESUMEN

The commercial significance of accurate and simple quantification of 2-Acetyl-1-pyrroline (2-AP) cannot be overstated. Present study was carried out to standardize a method for extraction and accurate quantitation of 2-AP from rice grain using GC-MS/MS equipped with HS-SPME auto sampler. The effect of sample quantity, addition of solvent, grinding process, sample particle size, head space parameters and SPME fiber incubation parameters, were optimized in the developed method. Dehusked rice powder (2 g) prepared under liquid nitrogen, and passed through the 80-mesh sieve, incubated for 40 min at 80 °C in headspace, followed by fiber (DVB/Carbon WR/PDMS) saturation time of 15 min, could produce the maximum response. The recovery of 2-AP from fortified sample ranged between 7.02 and 9.02% at 50-200 ng g-1 fortification irrespective of the grain matrices used. Standard addition method was appropriate to overcome the matrix effect and recovery of 2-AP was more than 90% using this method. The developed method was further utilized for quantification of 2-AP in four Basmati and two non-Basmati aromatic rice samples. The content of 2-AP ranged between 57.17 and 147.10 ng g-1 of rice and varied with geographical location. This fully automated method could improve the work efficiency and reduce error during the volatile extraction and adsorption phase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05674-7.

5.
J Biomol Struct Dyn ; 41(13): 6011-6026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35869653

RESUMEN

SagS sensor regulator plays a vital role in biofilm development of Pseudomonas aeruginosa which subsequently makes the cells more tolerant to various antimicrobials. The multidrug resistance (MDR) issue has risen substantially in recent years and is considered a global threat. Therefore, alternative compounds should be unearthed immediately to address the issues related to P. aeruginosa drug resistance for which SagS could be a candidate. The present study is an attempt to screen natural anti-biofilm compounds as the potent inhibitors of SagS. Twenty natural anti-biofilm/quorum sensing inhibiting compounds were retrieved from various literatures with significant inhibitory effects against P. aeruginosa biofilm from in-vitro experiments which were screened using various pharmacokinetic parameters. The screened and three standard drugs were docked against SagS-HisKA using AutoDock 4.2 tool, which were further analysed by MD simulations to understand the binding mode of compounds and dynamic behaviour of the complexes. Two potential anti-biofilm natural compounds, pinocembrin with binding affinity (-7.19 kcal/mol), vestitol (-7.18 kcal/mol) and the standard drug ceftazidime (-8.89 kcal/mol) were selected based on filtered parameters and better binding affinity. The trajectory analysis of MD simulations reflected Pinocembrin in stabilizing the system compared to ceftazidime. The existing reports state that the natural products represent promising source of therapy with least or almost nil adverse effect compared to synthetic drugs which is well collated with our in-silico findings. This investigation can save both time and cost required for in-vitro and in-vivo analysis for designing of a novel anti-biofilm agent against P. aeruginosa biofilm-associated infections.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Biopelículas , Flavanonas , Histidina Quinasa , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Biopelículas/efectos de los fármacos , Simulación de Dinámica Molecular , Percepción de Quorum , Ceftazidima/farmacología , Flavanonas/farmacología , Histidina Quinasa/metabolismo , Sitios de Unión , Proteínas Bacterianas/metabolismo , Fitoquímicos/farmacología , Simulación del Acoplamiento Molecular
6.
Fish Physiol Biochem ; 48(6): 1427-1442, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36264384

RESUMEN

Brewer's spent yeast (BSY) is among the most voluminous by-products generated in brewery industry that adds to the waste; however, smart utilization of BSY could lead to edible biomass production besides waste management. To utilize it for biomass production, it is being used in fish feeds; however, its effect on the fish physiology has been scantily studied. The present study investigated the proteomic changes in muscle tissues of carp Labeo rohita fed with BSY-based diet, to understand its impact on muscle physiology and biomass. Six feeds were prepared with different grades of BSY (0, 20, 30, 40, 50, 100% replacement of fishmeal with BSY) and fishes were fed for 90 days. Highest weight gain%, feed conversion efficiency, specific growth rate% were observed in 30% BSY-replaced group and this group was considered for the proteomic study. Comparative shotgun proteomic analysis was carried out by LC-MS/MS and data generated have been deposited in ProteomeXchange Consortium with dataset identifier PXD020093. A total of 62 proteins showed differential abundance; 29 increased and 33 decreased in the 30% BSY-replaced group. Pathway analysis using IPA and Panther tools revealed that the proteins tyrosine protein kinase, PDGFα, PKRCB and Collagen promote muscle growth by inducing the PI3K-AKT pathway. Conversely, the proteins Serine/threonine-protein phosphatase, Phosphatidylinositol 3,4,5-trisphosphate5-phosphatase 2A and Ras-specific guanine- nucleotide-releasing factor inhibit muscle growth indicating that 30% BSY-replaced feed promote muscle growth in a highly controlled manner. Findings suggest that BSY could be recycled for carp feed production in large scale thereby leading to resource conservation, reducing environmental effects.


Asunto(s)
Alimentación Animal , Carpas , Residuos Industriales , Desarrollo de Músculos , Músculos , Saccharomyces cerevisiae , Administración de Residuos , Animales , Carpas/crecimiento & desarrollo , Carpas/metabolismo , Cromatografía Liquida , Músculos/metabolismo , Fosfatidilinositol 3-Quinasas , Proteómica , Espectrometría de Masas en Tándem , Administración de Residuos/métodos
7.
Genes (Basel) ; 13(5)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35627186

RESUMEN

Although metabolic acidosis is associated with numerous pathophysiological conditions and its vasorelaxation effects have been well described in different animal and culture models, the molecular mechanisms of acidosis-induced vasorelaxation are not fully understood. Mesenteric artery models have been used extensively to examine the vascular response to various pathophysiological conditions. Our previous studies and several other reports have suggested the vascular responses of goat mesenteric arteries and human arteries to various stimuli, including acidic stress, are highly similar. In this study, to further identify the signaling molecules responsible for altered vasoreactivity in response to acidic pH, we examined the proteomic profile of acid stress-induced vasorelaxation using a goat mesenteric artery model. The vascular proteomes under acidic pH were compared using 2D-GE with 7 cm IPG strips and mini gels, LC-MS/MS, and MALDI TOF MS. The unique proteins identified by mass spectroscopy were actin, transgelin, WD repeat-containing protein 1, desmin, tropomyosin, ATP synthase ß, Hsp27, aldehyde dehydrogenase, pyruvate kinase, and vitamin K epoxide reductase complex subunit 1-like protein. Out of five protein spots identified as actin, three were upregulated > 2-fold. ATP synthase ß was also upregulated (2.14-fold) under acid stress. Other actin-associated proteins upregulated were transgelin, desmin, and WD repeat-containing protein 1. Isometric contraction studies revealed that both receptor-mediated (histamine) and non-receptor-mediated (KCl) vasocontraction were attenuated, whereas acetylcholine-induced vasorelaxation was augmented under acidosis. Overall, the altered vasoreactivity under acidosis observed in the functional studies could possibly be attributed to the increase in expression of actin and ATP synthase ß.


Asunto(s)
Acidosis , Vasodilatación , Acidosis/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cromatografía Liquida , Desmina/metabolismo , Arterias Mesentéricas/metabolismo , Óxido Nítrico Sintasa , Proteómica , Espectrometría de Masas en Tándem
8.
J Fungi (Basel) ; 8(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35448601

RESUMEN

Sheath blight of rice is a destructive disease that could be calamitous to rice cultivation. The significant objective of this study is to contemplate the proteomic analysis of the high virulent and less virulent isolate of Rhizoctonia solani using a quantitative LC-MS/MS-based proteomic approach to identify the differentially expressed proteins promoting higher virulence. Across several rice-growing regions in Odisha, Eastern India, 58 Rhizoctonia isolates were obtained. All the isolates varied in their pathogenicity. The isolate RS15 was found to be the most virulent and RS22 was identified as the least virulent. The PCR amplification confirmed that the RS15 and RS22 belonged to the Rhizoctonia subgroup of AG1-IA with a specific primer. The proteomic information generated has been deposited in the PRIDE database with PXD023430. The virulent isolate consisted of 48 differentially abundant proteins, out of which 27 proteins had higher abundance, while 21 proteins had lower abundance. The analyzed proteins acquired functionality in fungal development, sporulation, morphology, pathogenicity, detoxification, antifungal activity, essential metabolism and transcriptional activities, protein biosynthesis, glycolysis, phosphorylation and catalytic activities in fungi. A Quantitative Real-Time PCR (qRT-PCR) was used to validate changes in differentially expressed proteins at the mRNA level for selected genes. The abundances of proteins and transcripts were positively correlated. This study provides the role of the proteome in the pathogenicity of R. solani AG1-IA in rice and underpins the mechanism behind the pathogen's virulence in causing sheath blight disease.

9.
Biol Trace Elem Res ; 200(6): 2923-2936, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34467440

RESUMEN

Arsenic-contaminated food including farmed fish is one of the main routes of human exposure. Fish farmed in contaminated environment accumulates arsenic in different tissues with great variability. Thus, it is utmost important to quantify the risk associated with different farmed fish species in arsenic-contaminated aquaculture systems. In the present study, arsenic content was measured in twelve fish species (Labeo rohita, L. catla, Cirrhinus mrigala, Oreochromis niloticus, O. mossambicus, Liza tade, Puntius javanicus, L. calbasu, Glossogobius giuris, Macrobrachium rosenbergii, Ctenopharyngodon idella, and Bellamya bengalensis (gastropod)) collected from arsenic-contaminated aquaculture systems. Among the studied finfishes, C. idella was found to accumulate the lowest amount of arsenic (< 0.05 ± 0.00 mg kg-1) whereas the highest accumulation was noticed in O. mossambicus (1.0 ± 0.18 mg kg-1). However, the estimated carcinogenic and non-carcinogenic risks of human were found to be low for all the studied fishes. The calculated target hazard quotient (THQ) value for adults ranged from 0.01 to 0.08 whereas for children it ranged from 0.05 to 0.27 for low-arsenic-accumulating fishes (arsenic conc. < 0.5 mg kg-1). Based on these findings, C. mrigala, C. idella, and M. rosenbergii could be recommended as the candidate species for aquaculture in the arsenic-contaminated areas as farming of the low-arsenic-accumulating food fishes would also lower the risk of human exposure through food chain.


Asunto(s)
Arsénico , Cyprinidae , Contaminantes Químicos del Agua , Animales , Acuicultura , Arsénico/análisis , Bioacumulación , Ecosistema , Monitoreo del Ambiente , Peces , Estanques , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
10.
Biol Trace Elem Res ; 199(9): 3354-3359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33107018

RESUMEN

Arsenic is a highly carcinogenic environmental contaminant. Curcumin, the bioactive component of turmeric, exhibits therapeutic efficacy against several chronic inflammatory and infectious diseases. The present study was carried out to investigate the impact of arsenic on eye lens and evaluate the ameliorative potential of curcumin against arsenic toxicity. Gene expression analysis of α, ß, and γ-crystallins and fatty acid profile of lens tissues of arsenic-exposed Labeo rohita was examined and the protective effect of curcumin as diet supplement was evaluated. Curcumin-supplemented diet was prepared at 1.5% and 3% and fed to four groups of fish for 7 days prior to arsenic exposure (at 5 ppm and 15 ppm) for 15 days. Gene expression analysis showed downregulation of α and ß-crystallins in the eye lens of arsenic-exposed groups (fed basal diet), whereas the groups fed a curcumin-supplemented diet showed insignificant alterations. Similarly, fatty acid fingerprint of lens lipids arsenic-exposed group exhibited reduction in saturated fatty acid and docosahexaenoic acid (DHA) content. However, in 3% curcumin-supplemented diet-fed and arsenic exposed group group, fatty acid profile remained unchanged. Interestingly, concentration of one non-fatty acid, an antioxidant compound (phenol 2,4-bis 1,1 dimethyl; PD) that was identified in the GC-MS fingerprinting through NIST library (version 2.2, 2014), decreased in response to arsenic exposure which was restored to normal level in curcumin-supplemented groups proving the therapeutic potential of curcumin. The findings of the study suggest that curcumin has a protective effect on eye lens against arsenic toxicity.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Curcumina , Cristalino , Animales , Antioxidantes , Arsénico/toxicidad , Intoxicación por Arsénico/tratamiento farmacológico , Intoxicación por Arsénico/prevención & control , Curcumina/farmacología
11.
Environ Res ; 186: 109508, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325295

RESUMEN

Aquatic pollution is one of the most common threats to the ecological health of aquatic ecosystems and its biota. Fish as lower vertebrates are excellent model to study the impact and responses of aquatic pollution. In fish, gill is the main organ indicator of whole animal health as it comes in contact with the surrounding water and absorbs many pollutants and contaminants; therefore, investigations on alterations in fish gill at transcriptome level could provide newer insights to the stress response mechanism(s) and pathways. For comprehensive evaluation of the impacts of pollutants (joint toxicity) prevalent in the riverine environment, comparative transcriptome analysis, by Next Generation Sequencing under Illumina HiSeq 2500 platform, was carried out in gill tissues of Rita rita collected from two stretches of river Ganga (Kanpur and Farakka) and results were validated by RT-qPCR. Out of 154,077 unigenes (Accession SRR548008), a total of 2024 differentially expressed genes (DEGs) including 942 up-regulated and 1082 down-regulated genes were identified by DESeq program. Further, Gene Ontology (GO) of DEGs showed that ribosomal large subunit biogenesis, mitochondrial ribosome and box H/ACA SnoRNA binding categories are highly affected by pollution. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis showed the involvement of the DEGs in energy metabolism, translational and transcriptional machinery, protein folding and degradation suggesting that these signalling pathways are highly affected by aquatic pollution. Among the DEGs, up-regulation of cytochrome c oxidase subunit (cox) 7a2 (69.47 fold), hsp70 subunit 14 (hsp70-14, 5.27 fold), muscle related coiled-coil protein (MURC, 21.55 fold), lysozyme G (40.14 fold), cox17 (29.36 fold) were the conspicuous ones which showed similar trends in expression when analysed by RT-qPCR. Based on fold change, perturbation values, correlation analysis by PCA and RT-qPCR validation, up-regulation of cox7a2, MURC and hsp70-14 appeared to be the most promising biomarker responses and could be useful in the evaluation of gill health and possibly be extended towards aquatic ecosystem health assessment.


Asunto(s)
Bagres , Transcriptoma , Animales , Ecosistema , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Metabolomics ; 16(3): 30, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32100135

RESUMEN

INTRODUCTION: Fish inhabiting different aquatic habitats adapts to the environment by metabolomic readjustments. Understanding the combined activities of all the metabolic pathways (metabolome) helps in better understanding the complex interactions between gene and environment. OBJECTIVES: The anadromous migratory Tenualosa ilisha is a high value food fish comprising the dominant fishery of the rivers Padma and Hooghly. The present study aimed at understanding the influence of the two habitats on the nutritional composition of hilsa. METHODS: Metabolite profiling was carried out by GC/MS. De novo assembly of hilsa liver transcriptome was generated under Illumina HiSeq platform and multivariate analysis was employed for correlation and comparison. RESULTS: GC/MS fingerprinting showed C16:0, C18:1, C20:5 and C22:6 to be the predominant fatty acids present in hilsa liver, which were also found to be significantly higher in Hooghly hilsa. Comparative transcriptome analysis revealed that the differentially expressed genes were mainly associated with 'lipid metabolism' and 'amino acid metabolism' pathways. Multivariate analysis between the metabolites amino acid, fatty acid and corresponding gene expression showed that few genes of amino acid metabolism (EZH1, ALAS2 and ALDH4A1) positively correlated with individual amino acids (lysine, glycine and glutamate) in Hooghly hilsa. Similarly, the key genes for LC-PUFA biosynthesis (ELOVL5, FADS2, CPT1) showed positive correlation with individual LC-PUFAs (C18:3, C20:4, C20:5, C22:6), indicating higher LC-PUFA biosynthesis potential in Hooghly hilsa. CONCLUSION: Comparative metabolomic study in hilsa from the two different habitats showed that the habitats influence the nutritional composition as evidenced by high abundance of amino acids lysine, leucine and arginine and LC-PUFAs C18:3, C20:4, C20:5, C22:6 in Hooghly hilsa.


Asunto(s)
Metabolómica , Aminoácidos/metabolismo , Animales , Ácidos Grasos/metabolismo , Peces , Metabolismo de los Lípidos , Análisis Multivariante , Valor Nutritivo
13.
Chemosphere ; 245: 125599, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31855752

RESUMEN

Formaldehyde (FA), a ubiquitous volatile organic compound present in a wide range of resources, is a hazardous chemical and human carcinogen. Contamination of FA in food, especially perishable commodities like fish and meat, is a major source of exposure, although it is not recommended for use in food and food products owing to its carcinogenicity. Effects of oral feeding of FA have been studied by evaluating general health, haematology and clinical chemistry in rat. Recent studies have shown that FA exposure leads to detrimental cardiovascular effects. It regulates vascular tensions through nitric oxide-cGMP signalling pathway and ion channels in rats. Although FA is an established carcinogen, molecular studies on carcinogenic potential with dose dependency are meagre. In this context, the present study was undertaken to investigate the toxicogenomic and proteomic alterations in liver of rats fed FA through drinking water. By proteomic analysis, 621 proteins/protein-subunits showed differential abundance (proteome data available via ProteomeXchange with identifier PXD010534), whereas 536 differentially-expressed-genes were identified by transcriptome analysis (data available via Sequence Read Archive with identifier SRR7974113). Gene ontology analysis showed that binding, catalysis, signal transduction were affected in formaldehyde-fed rats. Pathway analysis revealed that formaldehyde-exposure activated PI3K-AKT pathway that leads to inhibition of caspase activity thereby assisting cells to survive against apoptosis. Decreased abundance/down-regulation of ANGPT, eNOS, STAT3 proteins/transcripts and increased abundance of EDN1 indicated decrease in angiogenesis and vasodilatation that restricted hepatic cells from becoming tumorigenic; thus, indicating FA could be less toxic and non-tumorigenic at low concentrations.


Asunto(s)
Formaldehído/farmacología , Proteoma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Formaldehído/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos
14.
Food Chem ; 293: 561-570, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151648

RESUMEN

Fish is a healthy food, rich in quality animal proteins, polyunsaturated fatty acids especially the (ω)-3 eicosapentaenoic acid and docosahexaenoic acid and micronutrients. In addition, fish are more available and affordable than other sources of animal proteins in tropical countries. Aquaculture, which is one of the fastest growing food production sectors, could play a big role in eradicating hunger, malnutrition and nutrient-deprivation globally. However, nutritional information on fish is necessary for utilization of fish in achieving nutritional security and will be helpful in prioritizing species for aquaculture. In this context, we have studied the detailed nutritional composition of selected fishes from India and developed a database (http://www.cifri.res.in/nutrifishin/index.php) with the food data generated. This review explore the implications of such nutritional information in consumer guidance, dietary counselling, food-policy planning and prioritization of species for aquaculture to fight hunger, malnutrition and micronutrient deficiency; ultimately contributing to food and nutritional security.


Asunto(s)
Alimentos Marinos/análisis , Aminoácidos/análisis , Animales , Bases de Datos Factuales , Ácidos Grasos/análisis , Peces , Análisis de los Alimentos , Abastecimiento de Alimentos , Valor Nutritivo , Vitaminas/análisis
15.
Fish Physiol Biochem ; 45(4): 1409-1417, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31144086

RESUMEN

Temperature plays an important role on reproductive physiology of vertebrates including mammals, fish, and birds. It has varying effects on fish reproduction depending on the species; higher temperatures favor the spring-spawning species, while lower temperatures stimulate reproduction in autumn spawners. To evaluate the impact of high temperature on the reproductive physiology of minnow Puntius sophore, we carried out expression analysis of selected genes associated with gamete quality (hsp60, hsp70, hsp90, hsf1, vtg), pleuripotency (sox2, oct4, nanog), and sex determination (dmrt1) in gonads (ovary and testis) of P. sophore, heat stressed for different time periods (36 °C/7 days or 60 days) using real-time quantitative polymerase chain reaction (RT-qPCR). Expression of most of the hsp, vtg, and pleuripotency marker genes sox-2, oct-4, and nanog genes was downregulated in both ovary and testis of heat-stressed fish. The expression of dmrt-1 was upregulated in testis but downregulated in ovary of the heat-stressed fish which could be a male favoring effect of high temperature in P. sophore. This study suggests that the reproductive physiology and health of the nutrient dense P. sophore would be negatively affected by high temperature stress.


Asunto(s)
Cyprinidae/genética , Trastornos de Estrés por Calor/genética , Ovario/metabolismo , Testículo/metabolismo , Animales , Femenino , Proteínas de Peces/genética , Expresión Génica , Trastornos de Estrés por Calor/veterinaria , Proteínas de Choque Térmico/genética , Masculino , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOX/genética , Factores de Transcripción/genética , Vitelogeninas/genética
16.
Chemosphere ; 211: 535-546, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30092534

RESUMEN

River pollution is one of the principal environmental concerns and biomonitoring tools can play an important role in pollution assessment in the riverine environment. Heat shock proteins (Hsps) have been found to be suitable tools for monitoring stress response. In the present study, expression analyses of hsp genes (hsp27, hsp47, hsp60, hsp70, hsc70, and hsp90) and selected hsp-regulatory genes (hsf1, hyou1, ask1, jnk) were carried out by RT-qPCR in catfish Rita rita collected from selected stretches of river Ganga to investigate changes in their expression patterns as biomarker response. Water quality characteristics were measured in terms of physico-chemical characteristics (DO, BOD, COD, pH, conductivity), element profile (arsenic, mercury, cadmium, lead, chromium, zinc, copper) and persistent organic pollutants (POPs; HCH, DDT, aldrin, endosulphan, heptachlor). Water quality index was calculated and sampling sites were categorized as good/medium/bad. Multivariate analysis was carried out taking the water quality parameters and the fold changes in hsp gene expression as variables, which showed that hsp47 and hsp70b correlated well with BOD, an indicator of organic pollution. To identify the organic pollutant(s) which could be influencing the expression of hsps, again multivariate analysis was employed taking concentration of POPs and fold changes of hsps, which showed up-regulation of hsp47 and hsp70b (HSP72i) correlated well with concentrations of aldrin and HCH. Synergistic effects of these POPs could be responsible for the up-regulation of said hsps, although individually present in low concentration; thus, indicating synergistic effect of the POPs on hsp47 and hsp70b up-regulation as biomarker response.


Asunto(s)
Biomarcadores/química , Contaminación Ambiental/análisis , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Animales , Ecosistema , Ríos
17.
Food Res Int ; 103: 21-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389608

RESUMEN

The Indian shad hilsa (Tenualosa ilisha), a commercially important food fish rich in oils, enjoys high consumer preference in the South Asian countries owing to its unique flavour and culinary properties. The present study was undertaken with the primary objective of determining the flesh quality attributes of hilsa in terms of nutritive value (gross chemical composition, amino acid, fatty acid and mineral composition), pH, water holding capacity (WHC) and expression of genes associated with fatty acid metabolism and flesh quality. Additionally, comparative studies on the flesh quality attributes in hilsa from two distributaries of river Ganga i.e. Hooghly and Padma were also carried out. A high WHC (>80%) suggested juicy and tender nature of hilsa meat. The protein content was 18-21% in hilsa from both the rivers and essential amino acid lysine, valine and functional amino acids leucine and arginine were significantly higher in Hooghly hilsa (P<0.05). The predominance of umami taste amino acids, glutamic acid and aspartic acid and sweet taste amino acids, serine, glycine and alanine in hilsa from both the rivers could be the contributing factors to its unique flavour. The fat content in hilsa from river Hooghly and Padma were found to be 9.94 and 7.84%, respectively. The concentration of flavouring fatty acids like saturated fatty acids (SFA) (myristic acid) and omega (ω)-3 polyunsaturated fatty acids (PUFAs) (linoleic acid, α-linolenic acid, arachidonic acid, eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA) were significantly higher in Hooghly hilsa (P<0.05). Among the genes associated with fatty acid metabolism studied, expression of cluster of differentiation (CD36), acetyl CoA oxidase (ACO), fatty acid synthase (FAS), peroxisome proliferator activated receptor beta (PPARß), peroxisome proliferator activated receptor gamma (PPARγ) and desaturase were significantly higher in Padma hilsa (P<0.05), and the change was <2 fold. Comparative gene expression profiling of flesh quality genes (actin, GAPDH, LDH, TPI) showed similar levels of expression in hilsa from both the rivers (P<0.05). The nutrigenomic information generated on various flesh quality attributes of hilsa has enriched the knowledgebase. Further, from comparative nutrient analysis on hilsa from river Hooghly and Padma, it was observed that Hooghly hilsa is superior in terms of oil content, ω-3 PUFAs EPA and DHA and essential amino acids; however, the expression profile of genes associated with flesh quality were found to be similar. Thus, within the scope of the present study, Hooghly hilsa (medium size category, 500-700g size) was found to be nutritionally superior.


Asunto(s)
Ácidos Grasos/análisis , Peces/genética , Análisis de los Alimentos/métodos , Metabolismo de los Lípidos/genética , Músculo Esquelético/química , Nutrigenómica/métodos , Valor Nutritivo , Alimentos Marinos/análisis , Aminoácidos/análisis , Animales , Peces/metabolismo , Humanos , India , Masculino , Minerales/análisis , ARN Mensajero/genética , Ríos , Gusto , Percepción del Gusto , Transcriptoma
18.
BMC Genomics ; 18(1): 617, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28810828

RESUMEN

BACKGROUND: High ambient temperature is known to affect fish gonadal development and physiology in a variety of ways depending on the severity and duration of exposure; however, the underlying molecular mechanisms are poorly understood. Gonadal gene expression influence the gonadal development, physiology and the quality of egg/sperm produced in teleosts and the mechanistic understanding of spatio-temporal changes in the gonadal gene expression could be instrumental in controlling the fate of egg/sperm and the quality of seed produced. Real time-quantititative polymerase chain reaction (RT-qCR), is a high throughput, sensitive and reproducible methodology used for understanding gene expression patterns by measuring the relative abundance of mRNA transcripts. However, its accuracy relies upon a suitable reference gene whose expression levels remain stable across various experimental conditions. In the present study, we evaluated the suitability of ten potential reference genes to be used as internal controls in RT-qPCR analysis in gonadal tissues (ovary and testis) of minnow Puntius sophore exposed to high temperature stress for different time periods (7 days, 60 days). Expression analysis of ten different constitutively expressed genes viz. 18S ribosomal RNA (18S rRNA), beta actin (ßactin), ß-2 microglobulin (b2mg), eukaryotic elongation factor-1 (eef1), glyceraldehyde-3phosphate dehydrogenase (gapdh), glucose-6-phosphate dehydrogenase (g6pd), ribosomal binding protein L13 (rpl13), tubulin (tub), tata box binding protein (tbp), ubiquitin (ubi) was carried out by using RT-qPCR and the stability in their expressions were evaluated by using four different algorithms; namely, delta Ct, BestKeeper, geNorm and NormFinder. RESULTS: In ovary, eef1 was found to be the most suitable reference gene in all the algorithms used. In testis, b2mg was found to be the most suitable reference gene in delta Ct, BestKeeper, NormFinder analysis while tbp and eef1 were found to be the most suitable reference genes in geNorm analysis. CONCLUSIONS: In conclusion, eef1 and b2mg were found to be the most suitable reference genes in ovary and testis, respectively, of Puntius sophore exposed to high temperature stress, and could be used as internal controls for gene expression analysis in gonadal tissues of Puntius sophore.


Asunto(s)
Cyprinidae/genética , Perfilación de la Expresión Génica/normas , Respuesta al Choque Térmico/genética , Ovario/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Testículo/metabolismo , Animales , Cyprinidae/fisiología , Femenino , Masculino , Estándares de Referencia , Reproducción/genética
19.
J Hazard Mater ; 336: 71-80, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28475914

RESUMEN

Arsenic (As) is a toxic environmental contaminant and potential human carcinogen. Chronic intake of arsenic-contaminated water and food leads to arsenicosis, a major public health problem in many parts of the world. Early detection of arsenic toxicity would greatly benefit patients; however, the detection of arsenicosis needs to be done early before onset of severe symptoms in which case the tools used for detection have to be both sensitive and reliable. In this context, the present study investigated plasma proteome changes in arsenic-exposed Labeo rohita, with the aim of identifying biomarkers for arsenicosis. Changes in the plasma proteome were investigated using gel-based proteomics technology. Using quantitative image analysis of the 2D proteome profiles, 14 unique spots were identified by MALDI-TOF/TOF MS and/or LC-MS/MS which included Apolipoprotein-A1 (Apo-A1) (6 spots), α-2 macroglobulin-like protein (A2ML) (2 spots), transferrin (TF) (3 spots) and warm-temperature acclimation related 65kDa protein (Wap65). The proteome data are available via ProteomeXchange with identifier PXD003404. Highly abundant protein spots identified in plasma from arsenic-exposed fish i.e. Apo-A1 (>10-fold), A2ML (7-fold) and Wap65 (>2-fold) indicate liver damage. It is proposed that a combination of these proteins could serve as useful biomarkers of hepatotoxicity and chronic liver disease due to arsenic exposure.


Asunto(s)
alfa-Globulinas/metabolismo , Intoxicación por Arsénico/diagnóstico , Arsénico/toxicidad , Carpas/sangre , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/diagnóstico , Hígado/efectos de los fármacos , Proteómica , Contaminantes Químicos del Agua/toxicidad , Animales , Apolipoproteína A-I/sangre , Biomarcadores/sangre , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/sangre , Cromatografía Liquida , Modelos Animales de Enfermedad , Diagnóstico Precoz , Electroforesis en Gel Bidimensional , Proteínas de Peces/sangre , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Transferrina/metabolismo
20.
Fish Physiol Biochem ; 43(4): 1131-1141, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28315162

RESUMEN

Heat stress is one of the major environmental concerns in global warming regime and rising temperature has resulted in mass mortalities of animals including fishes. Therefore, strategies for high temperature stress tolerance and ameliorating the effects of heat stress are being looked for. In an earlier study, we reported that Nrf-2 (nuclear factor E2-related factor 2) mediated upregulation of antioxidative enzymes and heat shock proteins (Hsps) provide survivability to fish under heat stress. In this study, we have evaluated the ameliorative potential of dietary curcumin, a potential Nrf-2 inducer in heat stressed cyprinid Puntius sophore. Fishes were fed with diet supplemented with 0.5, 1.0, and 1.5% curcumin at the rate 2% of body weight daily in three separate groups (n = 40 in each group) for 60 days. Fishes fed with basal diet (without curcumin) served as the control (n = 40). Critical thermal maxima (CTmax) was determined for all the groups (n = 10, in duplicates) after the feeding trial. Significant increase in the CTmax was observed in the group fed with 1.5% curcumin- supplemented fishes whereas it remained similar in groups fed with 0.5%, and 1% curcumin-supplemented diet, as compared to control. To understand the molecular mechanism of elevated thermotolerance in the 1.5% curcumin supplemented group, fishes were given a sub-lethal heat shock treatment (36 °C) for 6 h and expression analysis of nrf-2, keap-1, sod, catalase, gpx, and hsp27, hsp60, hsp70, hsp90, and hsp110 was carried out using RT-PCR. In the gill, expression of nrf-2, sod, catalase, gpx, and hsp60, hsp70, hsp90, and hsp110 was found to be elevated in the 1.5% curcumin-fed heat-shocked group compared to control and the basal diet-fed, heat-shocked fishes. Similarly, in the liver, upregulation in expression of nrf-2, sod, catalase, and hsp70 and hsp110 was observed in 1.5% curcumin supplemented and heat shocked group. Thus, this study showed that supplementation of curcumin augments tolerance to high temperature stress in P. sophore that could be attributed to nrf-2-induced upregulation of antioxidative enzymes sod, catalase, gpx, and the hsps.


Asunto(s)
Curcumina/farmacología , Cyprinidae/metabolismo , Suplementos Dietéticos , Trastornos de Estrés por Calor/veterinaria , Proteínas de Choque Térmico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos , Trastornos de Estrés por Calor/prevención & control , Proteínas de Choque Térmico/genética , Factor 2 Relacionado con NF-E2/genética , ARN/genética , ARN/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...